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A SIMPLIFIED METHOD FOR CALCULATING LAMINAR HEAT TRANSFER 

OVERBODIESATANANGLEOFATTACK 

By Fred R. DeJarnette and Ruby M. Davis 
Langley Research Center 

SUMMARY 

A simplified method is developed for calculating the ratio of the local to stagnation- 
point heat-transfer rate for  bodies at an angle of attack with only the free-stream Mach 
number and the ratio of specific heats required as inputs. The viscous problem is sim- 
plified by using the axisymmetric analog for three-dimensional boundary layers (small 
cross  flow in boundary layer) in conjunction with Lees' laminar heating rate  for axisym- 
metric bodies. An approximate technique for determining the geometry of the inviscid 
surface streamline is presented. In this technique the direction of a streamline at a 
given point on the body is taken as the direction of the resultant of the free-stream veloc- 
ity vector minus its normal component. 
t ies,  the modified Newtonian pressure distribution is used with isentropic flow along the 
surf ace. 

For determining the inviscid surface proper- 

The heat transfer over spherically blunted cones with 15O and 30° semiapex angles 
at angles of attack of Oo,  loo,  and 20' and a free-stream Mach number of 10.6 was com- 
puted by the present method. The values obtained agreed well with experimental data. 

INTRODUCTION 

Theoretical methods for predicting the aerodynamic heat transfer to symmetric 
bodies at an angle of attack and to lifting bodies a r e  required for the proper design of 
reentry heat-protection systems. A review of the literature (see, for instance, ref. 1) 
shows that previous methods a r e  restricted to small  angles of attack or to yawed infinite 
cylinders, or that they involve complicated numerical techniques to  solve the governing 
flow equations. This paper presents a relatively simple method for computing the laminar 
convective heating rates over basic hypersonic configurations at an angle of attack and 
with a highly cooled surface. Radiative heat transfer is not considered here, nor is the 
effect of ablation gases on the convective heating rates. 

The complexity of the three-dimensional differential equations governing the invis- 
cid as well as the viscous flow field over a body at an angle of attack makes the use of 
simplifying approximations desirable so that tractable solutions may be obtained. A 



substantial simplification to the viscous flow field equations is achieved through the axi- 
symmetric analog for  three-dimensional boundary layers (refs. 2 and 3). This axisym- 
metric analog transforms the general three-dimensional boundary-layer equations into 
the same form as those for  an axisymmetric body at an angle of attack of 0' when the 
coordinate directions a r e  taken along and perpendicular to  the inviscid body streamlines, 
and when the cross flow (Le., the component of boundary-layer flow normal to an inviscid 
streamline and along the body surface) is assumed to  be small. Therefore, if the pres- 
su re  distribution and streamline geometry are known, the heat transfer may be calculated 
along a streamline by any method applicable to  a body of revolution at an angle of attack 
of Oo; such as the method of Lester Lees (ref. 4). 

The major difficulty in applying the axisymmetric analog to angle-of-attack problems 
is that the inviscid solution on the body surface (surface pressures,  velocity, and stream- 
line geometry) is required. Ordinarily, the inviscid solution would have to be obtained 
by some numerical technique, which is a major undertaking in itself for bodies at an 
angle of attack. Therefore, some approximations in the inviscid solution a re ,  in many 
cases, necessary. 

In the present method, the direction of an inviscid streamline at a given point on the 
body is obtained by assuming that the free-stream velocity vector loses its normal com- 
ponent upon striking the body. Thus, the direction of a streamline is taken as the direc- 
tion of the resultant of the free-stream velocity vector minus its normal component at a 
given body point. Once the expression fo r  the streamline direction is obtained, a first- 
order  ordinary differential equation for  the geometry of the streamline may be written. 
Then, another ordinary differential equation for  the scale factor (corresponding to the 
body radius in the axisymmetric analog and often referred to as the streamline diver- 
gence function) is obtained. Both these differential equations may be readily integrated 
in closed form for some simple body shapes; and, for more complicated body shapes, 
they may be integrated by a simple numerical scheme such as the Runge-Kutta method. 

The magnitude of the flow velocity along a streamline is determined directly from 
the pressure distribution under the assumption that the inviscid flow on the surface is 
isentropic. 
for convenience. 

In the present paper, modified Newtonian pressure distributions a r e  assumed 

The accuracy of the present method was partially assessed by computing the ratio 
of local to stagnation-point heat-transfer rate on spherically blunted 1 5 O  and 30° cones 
at a free-stream Mach number of 10.6, a ratio of free-stream specific heats of 1.4, and 
angles of attack of 00, loo, and 20°. The results a r e  shown to compare well with experi- 
mental data. 
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SYMBOLS 

A 

&,$s 

H 

n 

P 

P O  

tr, 

R 

r 

rb 

function defined by equation (10) 

unit vectors normal (outer) to the body surface and along inviscid surface 
streamline, respectively 

unit vector normal to Gn and &, defined by equation (12) 

unit vectors in r and $ directions, respectively 

function defined by equation (3) 

scale factor for 5 coordinate 

scale factor for p coordinate 

unit vectors in x, y, and z directions, respectively 

slope of cone surface 

metric defined by equation (5) 

free-stream Mach number 

coordinate normal to body surface 

local static pressure 

stagnation pressure behind normal shock wave 

local heat-transfer rate 

nose radius 

body radius 

body base radius 
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distance along a streamline, measured from the stagnation point 

inviscid velocity along body-surface streamline 

undisturbed free-stream velocity 

undisturbed f ree-stream velocity vector 

Cartesian coordinates (fig. 1) 

angle of attack 

coordinate measured along body surface,  perpendicular to inviscid streamlines 

ratio of specific heats in f ree  s t ream 

mean ratio of specific heats behind bow shock wave 

inclination of body surface with respect to body axis 

coordinate measured along a streamline, H d5 = ds 

angular coordinate (fig. 1) 

angle between V, and -gn, defined by equation (20) 
-c 

Subscripts: 

i sphere-cone interface 

0 stagnation point 

X indicates that derivative is taken with x held constant 

P indicates that derivative is taken with p held constant 

A prime indicates a derivative with respect to x. 
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ANALYSIS 

Problem Description 

For axisymmetric blunt bodies at an angle of attack of 0' and with a highly cooled 

given in the notation of the present report, was derived in reference 4: 
surface, the ratio of the local heat-transfer rate kw to the stagnation-point heat-transfer 
rate ;I 

WYO 

The modified Newtonian pressure distribution combined with the assumption of isentropic 
flow along the body surface yields the following results (ref. 4): 

1 
2 

PO y,Mco 

G =  

According to the axisymmetric analog (refs. 2 and 3) ,  equations (1) to (4) a r e  also 
applicable to any inviscid surface streamline on an asymmetric body or  an axisymmetric 
body at an angle of attack if s is the distance measured along the streamline and r is 
replaced by the scale factor h corresponding to the coordinate p measured along the 
body surface and perpendicular to the streamline. The assumption of zero cross  flow, 
which is implied in the axisymmetric analog, was shown in reference 5 to be applicable 
to highly cooled blunt bodies in hypersonic flow. 

The present analysis will consider a spherically blunted axisymmetric body at an 
angle of attack. The basic method presented here is applicable, however, to  any three- 
dimensional body at an angle of attack. The coordinates 6, p, and n (when n is 
measured from the surface along a straight line normal to the surface) form an ortho- 
gonal coordinate system whose metric is 

where H d< = ds. 

dZ2 = H2dt2 + h2dp2 + dn2 ( 5) 
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On the body surface n = 0, H = H(x,@), and h = h(x,@), where x is the distance along 
the body axis and @ is the circumferential position. (See fig. 1.) The coordinate p 
is constant along a given inviscid surface streamline. 

If the modified Newtonian pressure distribution (eq. (2)) is accepted as being suffi- 
ciently accurate, then the heating-rate ratio for  the body at an angle of attack may be 
computed from equations (1) to (4) along any inviscid surface streamline, provided the 
streamline geometry and scale factor h are known (H is not required). 

Streamline Geometry 

In order to determine the streamline geometry and scale factor h, it is assumed 
here that the direction of an inviscid surface streamline may be taken as the direction of 
the resultant of the free-stream velocity vector minus its normal component at a given 
point on the body surface. With G S  defined as a unit vector in the direction of a stream- 
line, this assumption gives 

where Gn is a unit vector normal (outer) to the surface, which is given by 

(7) 
-irV + f cos $ + i; sin 4 en = 

( l + r  12 1 1/2 

The quantities c, 3, and i; a r e  unit vectors in the x, y, and z directions, respec- 
tively (fig. 1). As shown in figure 1, V, lies in the xy-plane; hence 

A 0. 

V, = V,(i cos a! + j sin a!) (8 )  

where a! is the angle of attack. Equations (7) and (8) may be utilized in equation (6) to 
obtain 

where 

and 2r and G$ are unit vectors in the directions of r and $, respectively. (See 
fig. 1.) 

The differential equation that defines the streamline geometry may now be formed 
from equation (9) as 
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Although the left side of this equation is written as a partial derivative, p is constant 
along a streamline and therefore it may be replaced by an ordinary derivative for the 
integration of a given streamline. Thus, for  any chosen streamline emanating from the 
stagnation point, equation (11) may be integrated to determine the geometry of this stream- 
line (that is, @ = @(x)) as it wraps around the body. Note that the modified Newtonian 
pressure distribution locates the stagnation point at rof = cot a!, @ = 7~ radians. 

Scale Factor 

The next task is to  determine a relation for the scale factor h along a streamline. 
Let Gp be a unit vector in the direction of p; thus 

.. A A 

ep = es x e, 

A 

ep  = 
(i' + brr')sin a sin @ + b@(rf  sin a cos 4 + cos a) 

A 

Now since the element of a r c  length in the p direction on the surface is h dp, then 

6 A r' s in  a c o s  @ + cos a! q$)x = ep . e+ = 
A 

Therefore, along the surface 

r(rf sin a cos @ + cos a) 
A 

h =  

where @ = +(x,p) defines the circumferential location of the inviscid surface stream- 
lines, and again p is constant along a given streamline. 

Since @ = @(x,p) is analytic, 

a2+ a24 
ax ap ap ax 
-- -- 

and since ($)x = (&-)l$)xy 
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Then equation (1 5) becomes 

Taking the partial derivative of equation (11) with respect to  Cp and holding x constant 
yields 

-(I + rl2)(rv tan a! + cos $)tan a! 

r(1 + rl cos $ tan 
X 

With this substitution, equation (17) finally becomes 

-(I + rl2)(r' tan a! + cos $)tan a! Lln(..\l = 

For the integration of equation (18) along a given streamline, the left side of this equation 
may be written as an ordinary derivative: 

The solution of this equation allows h to be computed from equation (14). 

Equations (2) and (4) may also be used to  compute the pressure ratio and velocity 
ratio along any inviscid surface streamline for the body at an angle of attack. For equa- 
tion (2), cos @ may be evaluated from equations (7) and (8) as 

However, the surface region on the leeward side of the body at an angle of attack where 
cos @ 5 0 will be in the "aerodynamic shadow," and the modified Newtonian theory does 
not predict the pressures  in this region. In the present method the surface pressures in 
the shadowed region a r e  assumed to be free-stream static pressure,  but the streamline 
geometry and the scale factor h a r e  still determined from equations (ll), (14), and (19) 
in this region. 

Application to Spherically Blunted Cone at Angle of Attack 

The determination of the streamline geometry and the scale factor h is very sim- 
ple for spherically capped bodies at an angle of attack when the surface sonic line (invis- 
cid) lies entirely on the spherical surface. In this case the streamlines on a portion of 
the spherical cap follow spherical meridians about an axis through the center of the sphere 
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and parallel to vm. From geometrical considerations, the coordinate p on the spherical 
cap is the angular position of a streamline measured in the plane tangent to the spherical 
cap at the stagnation point, with p = 0 for the top meridian and p = B radians for the 
bottom meridian. (See fig. 2.) Also, while on the spherical cap, the scale factor h is 
simply the distance f rom the point in question on the sphere to the axis through the cen- 
t e r  of the sphere and parallel to Fa. Therefore, for the spherical cap, 

and from the geometry of the streamlines, it may be verified that at the sphere-cone 
interface p and @i are related by the expression 

hi sin p = ri sin @i 

Hence it follows that 
COS d; + k tan CY 

where i refers to values at the sphere-cone interface and k is the slope of the cone 
surf ace : 

k = tan e = r' (23) 

For the conical afterbody, equation (11) may be integrated to yield the streamline 

k geometry as 
+ i  (l+k2)tan a! k2 

1 +k2 
- -  Ci -tan$ - r-) 

tan - 

To determine the scale factor h for the afterbody, it is noted that 

(&$x = (:) X (F)x 
and taking the partial derivative of equation (24) with respect to $i (holding x constant) 
yields 

Now equation (22) is differentiated with respect to p (holding x constant) to get 
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s i n 2 ~ i  + (cos cpi cos a + k s in  a)2 

cos a + k s in  Q! cos Gi 

Finally, for the conical afterbody, equations (24) to  (27) are substituted into equation (14) to  
obtain 

k 
1 

2 tn$ t1+k2) t an  
sin2Gi + (cos Gi cos a + k s in  a) 

(%)l+k2 1/2 
h =  - 

kina@ + (cos @ cos a + k sin a)21]1/2(l + k2) 
R 

(28) 

The reduction of equation (28) for the limiting condition of a = 0 and for  the case of 
@ = 0, a with a finite is given in the appendix. 

Equations (24) and (28) may now be used in equations (1) to (4), with r replaced by 
h and s measured along an inviscid surface streamline, to determine the heating-rate 
ratio along any streamline. The integral in the denominator of equation (1) can be evalu- 
ated by any simple technique, such as Simpson's r d e .  

RESULTS 

The method presented here was used to compute the nondimensional heating rate  
over spherically blunted cones with 15O and 30° semiapex angles. Angles of attack of O o ,  
loo, and 20°, a Mach number of 10.6, and a ratio of specific heats of 1.4 were considered. 
Calculated variations have been compared with the experimental data given in reference 6. 

Figures 3 and 4 give the longitudinal variation of the nondimensional heating rate 
along the bottom, top, and side @ = 3 radians at angles of attack of O o ,  loo, and 20'. It 
is clear from these figures that theoretical and experimental data agree well along the 
windward and side meridians, but along the top meridian (leeward side) the agreement is 
poor. Also, 'near the spherical cap theoretical values generally exceed experimental data. 
This would seem to indicate that the spherical-cap heating-rate distributions a r e  not pre- 
dicted accurately near the sphere-cone interface. 

( 2  ) 

Variations around the bodies at specific longitudinal locations a r e  given in figures 5 
and 6. Previous observations made concerning the longitudinal variations a r e  again valid; 
that is, the agreement between experimental and theoretical data is worst on the leeward 
side and near the nose cap. 

It should be noted that when the angle of attack is large enough to cause any portion 
of the sonic line to move off the spherical cap, the stagnation point will move a short dis- 
tance from the position ro' = cot a, @ = n radians (see ref. 7). In addition, the axial 
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symmetry on a portion of the spherical cap, about an axis through the center of the sphere 
and parallel to  TM, is destroyed. The present method does not account for this phenome- 
non, and the spherically blunted 300 cone at Q! = 20' is a marginal case. 

CONCLUDING REMARKS 

A simplified method for computing the laminar heating rates  over bodies at an angle 
of attack is developed and the results are shown to agree well with experimental results 
for the case of a spherically blunted cone. Although the applications presented here are 
blunted cones, the basic method is applicable to any asymmetric or axisymmetric body at 
an angle of attack. The relatively small  amount of numerical computations required 
makes the method particularly attractive for engineering applications. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 7, 1968, 
124-07-01- 18-23. 
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APPENDIX 

LIMITING FORM OF SCALE FACTOR h FOR a! = 0 

ANDFOR @ = O , T  WITH a ! > O  

Equation (24) may be used to rewrite equation (28) in the following form: 

sin2@i + (COS @i COS a! + k sin a) 2 s in  @ !z =L- 
ri sin @i Fin2@ + (cos @ cos a! + k s in  0 1 ) q l / ~ ( l  + k2) l l2  

Then if equation (24) is rearranged to give 

(l+ka)tan a! 
k 

tan - 
2 

it is clear that in the limit as a! - 0, 

@i tan - 
1=- 2 

@ tan - 
2 

or  
@i = @ 

With this identity substituted into equation (Al),  there results 

But ri = R( l  + k2)-1/2 and the correct limit for h as a! 0 is obviously obtained: 

The next problem is to find the limit of h as @ - 0 and as @ - a radians (for 
a! > 0). From equation (Al), it is found for the first limit that 
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APPENDIX 

In order to evaluate , the trigonometric identity tan - = is sub- 
@ sin cp 
2 1 + c o s  @ 

@i-0 
stituted into equation (24) to get 

k k+k2tan a! 

Then from equation (A5), 

(l+k%)tan Q! 

Now substitute this relationship into equation (A4) to get 

k-tan a 
k+k2tan a! (1 + k tan @)cos a! lim k) = (g)  

@ -0 (1 + k2) l I2  
@ id0  

Next consider lim (k). From equation (Al) ,  
6-r 

Note that since the stagnation point must lie on the spherical cap and since rol = cot a! 
at the stagnation point, k tan a! < 1 everywhere on the conical afterbody. 

cp 1 - cos @ Now the trigonometric identity tan - = is substituted into equation (24) 
2 s in  @ 

to get 
k k2tan a!-k 
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APPENDIX 

Then in  the limit this equation goes to 
(l+ka)tan a! 

sin @ k-k2tan a! 
~ p - ~  lim (-) sin @i =(:) 
@i-r 

Finally, equation (A8) is substituted into equation (A7) to obtain 

k+tan a! 

k-k2tan a! (1 - k tan a!)cos a! lim @) = (e) . -  

@-.rr (1 + k2)1/2 
@i-r 

Therefore, equations (A6) and (A9) give the limiting values of at @ = 0 and @ = 

radians, respectively. It should be noted that equation (A9) gives the same relation as 
equation (A6) when a! is replaced with -a. 

R 
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Figure 1.- Typical axisymmetric body i l lustrat ing axes and symbols used. 
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Figure 2.- Sketch i l lustrating streamline coordinate p. 
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Figure 3.- Longitudinal variation of nondimensional heating-rate ratio fiw/flw,o on a spherically blunted cone with 15O semiapex angle. M, = 10.6. 
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Longitudinal variation of nondimensional heating-rate ratio Gw/qw,o on a spherically blunted cone with 30° semiapex angle. 
M, = 10.6. 
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Figure 5.- Circumferential variation of nondimensional heating-rate ratio Gw/Gw,o on a spherically blunted cone with Eo semiapex angle. 
M, = 10.6. 
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